Profile

Tahmid Enam Shrestha

Lecturer (CSE)
Faculty and Department Affiliation

Faculty of Science and Engineering
Department of Computer Science and Engineering

Degrees and Universities Attended

MSc  in  Computer  Science  from  American  International  University-Bangladesh  (AIUB)  (On  going)

BSc  in  Computer  Engineering  from  American  International  University-Bangladesh  (AIUB)

HSC  from  Saidpur  Cantonment  Public  School  &  College,  Saidpur,  Nilphamari

SSC  from  Ibrahim  Memorial  Shiksha  Niketan,  Birganj,  Dinajpur

Short Introduction

Tahmid Enam Shrestha is a Lecturer in the Department of Computer Science and Engineering at City University, Dhaka, and an Assistant Investigator at the Artificial Intelligence Research and Innovation Lab (AIRIL), Dhaka. He holds a Bachelor of Science degree in Computer Science and Engineering, majoring in Information Systems, from the American International University-Bangladesh (AIUB), and is currently pursuing a Master of Science in Computer Science at AIUB, specializing in Intelligent Systems. Mr. Shrestha's research interests are primarily focused on Deep-learning, Explainable Artificial Intelligence, Computer Vision, Biomedical Image Analysis, and Federated-learning for decision-support applications. His work aims to advance the development of AI systems that are not only technically robust but also transparent and interpretable, particularly in critical fields such as healthcare and security. A member of the Institute of Electrical and Electronics Engineers, Mr. Shrestha has been recognized for his contributions to AI research, receiving the Best Researcher Award from AIRIL in 2025. His work continues to have a significant impact on both academic and applied AI research, contributing to the development of scalable, ethical AI technologies.

Teaching experience

Lecturer,  Department  of  Computer  Science  and  Engineering,  City  University.
September  2025  –  Till  date.

Research Interest

Computer  Vision,
Deep  Learning,
Biomedical  Image  Analysis,
Federated  Learning,
Cyber-Security,
Explainable  AI.

Publications

Journal  Papers
1. Tanim,  S.  A.,  Shrestha,  T.  E.,  Emon,  M.  R.  I.,  Mridha,  M.  F.,  &  Miah,  M.  S.  U.  (2025).  Explainable  deep  learning  for  diabetes  diagnosis  with  DeepNetX2.  Biomedical  Signal  Processing  and  Control,  99,  106902.  Q1(Impact  Factor  4.9).

2. Aurnob,  A.R.,  Tanim,  S.  A.,  Shrestha,  T.  E.,  Mridha,  M.  F.,  FedFusionNet:  Advancing  Oral  Cancer  Recurrence  Prediction  through  Federated  Fusion  Modeling.  Information  Fusion  Q1(Impact  Factor  15.8).

3. Al  Huda,  M.  S.,  Shrestha,  T.  E.,  Hossain,  A.,  Sharif,  N.  B.,  Ali,  M.  A.,  &  Erdei,  T.  I.  (2025).  DeepMelaNet:  Advancing  Melanoma  Stage  Classification  in  Skin  Cancer  Diagnosis,  Engineering  Technology  &  Applied  Science  Research,  15(1),  19627-19635.  Q2(Impact  Factor  1.96).

4. Rahman,  R.  B.,  Tanim,  S.  A.,  Alfaz,  N.,  Shrestha,  T.  E.,  Miah,  M.  S.  U.,  &  Mridha,  M.  F.  (2024).  A  comprehensive  dental  dataset  of  six  classes  for  deep  learning  based  object  detection  study.  Data  in  Brief,  57,  110970.  Q3(Impact  Factor  1.0).

Conference  Papers
1. Shrestha,  T.  E.,  Tanim,  S.  A.,  Islam,  M.,  &  Nur,  K.  (2024,  May).  Revolutionizing  cucumber  agriculture:  Ai  for  precision  classification  of  leaf  diseases.  In  2024  6th  International  Conference  on  Electrical  Engineering  and  Information  &  Communication  Technology.  IEEE  (ICEEICT  2024).

2. Tanim,  S.  A.,  Arnob,  A.  R.,  Shrestha,  T.  E.,  Alam,  T.,  &  Nur,  K.  (2024,  May).  Enhancing  blood  cell  classification  by  applying  big  transfer  and  (xai).  In  Doctoral  Symposium  on  Computational  Intelligence  (pp.  181-192).  Singapore:  Springer  Nature  Singapore  (DoSCI  2024).

3. Shrestha,  T.  E.,  Khan,  M.,  Mishu,  M.  J.,  Huda,  S.  A.,  &  Ali,  A.  (2025).  DeepRoseNet:  An  Explainable  Hybrid  Deep  Learning  Approach  for  Precise  Rose  Leaf  Disease  Classification.  Proceedings  of  the  2025  IEEE  International  Conference  on  Quantum  Photonics,  Artificial  Intelligence,  and  Networking  IEEE(QPAIN-2025).

4. Shrestha,  T.  E.,  Rahman,  S.  B.,  Bika,  S.  A.,  Khan,  M.  A.,  &  Rahman,  T  (2025,  December).  Enhancing  Potato  Leaf  Disease  Classification  Using  a  Modified  CNN  with  XAI.  2nd  IEEE  Conference  on  Computing  Applications  and  Systems  (COMPAS  2025).

5. Shrestha,  T.  E.,  Islam,  J.,  Rukaiya,  A.  R.,  Rizon,  A.M.  R.,  Dipto,  S.  K.,  &  Ali,  A.    (2025,  December),  LungXResViT:  A  Robust  Hybrid  DL  Framework  for  Accurate  Lung  Cancer  Classification  with  XAI,  2nd  IEEE  Conference  on  Computing  Applications  and  Systems  (COMPAS  2025).

6. Shrestha,  T.E.,  Habib,  A.,  Sabbir,  H.,  Annasha,  F.R.,  Hossen,  M.S.,  Rahman,  S.M.A.,  (2025,  December),  Chronic  Kidney  Disease  Diagnosis  Using  Interpretable  Ensemble  Machine  Learning  Models,  7th  International  Conference  on  Integrated  Sciences  (ICIS  2025).

7. Shrestha,  T.  E.,  Sayem,  A.,  Rahman,  M.  F.,  Khan,  M.  A.,  &  Ali,  A.  (2025,  December),  Securing  TLS  in  the  Quantum  Era:  A  Robust  Hybrid  Protocol  with  Kyber,  X25519,  and  Dilithium.  28th  International  Conference  on  Computer  and  Information  Technology.  (ICCIT  2025).

8. Shrestha,  T.  E.,  Khan,  M.,  &  Karim,  R.  (2025,  December),  TM-DeepNet:  A  Hybrid  Deep  Learning  Model  with  Explainable  AI  for  Acute  Lymphoblastic  Leukemia  Stage  Classification.  28th  International  Conference  on  Computer  and  Information  Technology.  (ICCIT  2025).

9. S.  A.  Tanim,  T.  E.  Shrestha,  K.  Tanvir,  M.  S.  Kabir,  M.  F.  Mridha  and  M.  K.  Haq,  "Single-Level  Fusion  for  Enhancing  Meat  Quality  Classification  with  Explainable  AI,"  2024  IEEE  International  Conference  on  Computing,  Applications  and  Systems  (COMPAS),  Cox's  Bazar,  Bangladesh,  2024,  pp.  1-6,  doi:  10.1109/COMPAS60761.2024.10796775.  (COMPAS  2024).

10. Sadi,  A.  H.,  Shrestha,  T.  E.,  Tanvir,  K.,  Ali,  A.,  Towhid,  B.,  (2024).  ViTBiT-PoxNet:  An  Explainable  Hybrid  Deep  Learning  Framework  for  Enhanced  Early  Stage  Monkeypox  Classification.  International  Conference  on  Computing  and  Communication  Networks.  Springer  (ICCCNet-2025).

11. Rukaia,  A.  R.,  Shrestha,  T.  E.,  Kakingwe,  A.,  Chen,  S.,  (2025).  AGNet:  An  Alternate  Guidance  Network  for  Colorectal  Polyp  Segmentation  and  Detection.  2nd  International  Conference  on  Next-Generation  Computing,  IoT  and  Machine  Learning.  IEEE  (NCIM-2025).

12. Shatil,  S.  M.,  Habib,  A.,  Shrestha,  T.  E.,  Hossain,  S.,  Huda,  M.  S.  A.,  &  Tania,  N.  A.  J.  (2024,  October).  Improving  Big  Data  Visualization  and  Association  Rule  Mining  through  Splunk  Database  Gap  Analysis.  In  Proceedings  of  the  3rd  International  Conference  on  Computing  Advancements  (pp.  713-718),  ACM  (ICCA  2024).

13. Sahrin  Jisha,  S.,  Ayon,  S.,  Tanim,  S.  A.,  Md.  Raeid,  F.  A.,  Shrestha,  T.  E.,  Huda,  M.  S.  A.,  &  Ali,  M.  A.  (2024,  October).  Mental  Health  Analysis:  ML  And  Explainable  AI  Predict  Depression  Among  Bangladeshi  University  Students.  In  Proceedings  of  the  3rd  International  Conference  on  Computing  Advancements  (pp.  491-497),  ACM  (ICCA  2024).

14. Alam,  G.  M.  I.,  Tanim,  S.  A.,  Shrestha,  T.  E.,  Raihan,  M.,  &  Nur,  K.  (2024,  June).  Deep  Learning  Approach  with  eXplainable  Artificial  Intelligence  Interpretation  for  Early-Stage  Diabetes  Detection.  In  the  International  Conference  on  Data  Analytics  &  Management  (pp.  289-302).  Singapore:  Springer  Nature  (ICDAM  2024).

15. Tanim,  S.  A.,  Alam,  G.  M.  I.,  Shrestha,  T.  E.,  Islam,  M.,  Jahan,  F.,  &  Nur,  K.  (2024,  November).  Breast  Cancer  Diagnosis  with  XAI-Integrated  Deep  Learning  Approach.  In  2024  International  Conference  on  Innovation  and  Intelligence  for  Informatics,  Computing,  and  Technologies  (pp.  659-665).  IEEE  (3ICT  2024).

16. Al  Huda,  M.  S.,  Arman,  R.  A.,  Shrestha,  T.  E.,  Tamim,  S.  A.,  &  Ali,  M.  A.  (2024,  October).  DeepResVit:  A  Hybrid  Deep  Learning  Approach  for  Ovarian  Cancer  Classification  with  XAI.  In  2024  2nd  International  Conference  on  Information  and  Communication  Technology  (pp.  229-233).  IEEE  (ICICT  2024).

17. Chowdhury,  M.  T.,  Tanim,  S.  A.,  Shrestha,  T.  E.,  Hossain,  M.  F.,  &  Bhuyan,  M.  H.  (2024,  June).  Enhancing  Electoral  Integrity:  A  Multi-layered  Approach  to  Electronic  Voting  Security  Using  Arduino  and  Biometric  Authentication.  In  the  International  Conference  on  Data  Analytics  &  Management  (pp.  643-654).  Singapore:  Springer  Nature  Singapore  (ICDAM  2024).

18. Hossain,  M.  H.,  Shrestha,  T.  E.,  Abdullah,  M.,  Iqbal,  M.  A.,  Ahmhed,  T.,  Rahman,  S.  (2025,  December),  DeepBNet:  A  Modified  DL  Model  for  More  Accurate  Classification  of  Bengali  Compound  Handwritten  Characters.  2nd  IEEE  Conference  on  Computing  Applications  and  Systems  (COMPAS  2025).

19. M.  Hossain,  S.  A.  Promi,  S.  H.  Arman,  A.A.  Rabeya,  M.  S.  A.  Huda,  and  T.  E.  Shrestha,  “Exploring  deep  3D  U-Net  architectures  for  automated  brain  tumor  segmentation:  A  study  on  the  BraTS  benchmark  dataset,”  in  International  Conference  on  Intelligent  Data  Analysis  and  Applications  Springer  (IDAA  2025).

20. Sohag,  Nuhash,  A.A.  Rabeya,  Ahmhed,  M.  S.  A.  Huda,  and  T.  E.  Shrestha,  “Bridging  AI  and  Ethnobotany:  A  Deep  Learning  Approach  for  Medicinal  Plant  Identification  and  Real-World  Deployment,”  in  International  Conference  on  Intelligent  Data  Analysis  and  Applications  Springer  (IDAA  2025).